
FEATPOST macros

L. Nobre G., http://matagalatlante.org

January 2006

Abstract

This document intends to be an explanation of the MetaPost macros defined in the FEAT-
POST package. Its purpose is to draw two or three-dimensional physics diagrams. The
FEATPOST package is supposed to help you draw figures containing 3D dots, vectors, flat ar-
rows, angles, parametric lines, circles, ellipses, cones, cylinders, spheres, globes, hemispheres,
toruses, elliptical frusta, polygons, polyhedra, functional and parametric surfaces, direction
fields, field lines and trajectories in vector fields, schematic automobiles, electric charges, etc.
The fact that it is a programming language instead of Computer Aided Design (CAD) helps
the user to experiment different figure layouts without changing specified geometric relation-
ships among figure elements. Two of the intrinsic MetaPost features which may be important
for physics diagrams are: (i) the typesetting power of TeX is easily called when needed and
(ii) besides a sufficient number of mathematical operators, geometric relationships may be
expressed by linear equations, without explicit assignements.

1 Introduction

3D in MetaPost is not a new idea. Denis Roegel
dog
contributed related packages to CTAN some years ago. It was the subject of a 1997 TUG-

boat article (V18, N4, 274-283). Recently he developed MP2GL http://www.loria.fr/~roegel/TeX/mousson2005.pdf .
Anthony Phan has been developing a very elegant package called m3D http://www-math.univ-poitiers.fr/~phan/m3Dplain.html.
Due to his skilled coding, m3D can handle larger objects and can produce more realistic render-
ings than FEATPOSTȮther possibilities include GNU 3DLDF http://directory.fsf.org/GNU/3DLDF.html

, Bob’s Info http://robert.silve.free.fr/latex/metapost3D/ or Asymptote http://asymptote.sourceforge.net/ .
In any case we are talking about vector-based abstract diagrams, so the functionality of
these packages is nearer to GNUPLOT than to OpenGL. We could also talk about POV-ray

http://www.povray.org/ or blender http://www.blender3d.org/ but these are focused
on ray-traced images, a completely different thing.

Regarding software FEATPOST requires only MetaPost but recommends LaTeX, bash,

ImageMagick, ghostscript, Linuxdoc, Textutils, dvips, epstopdf, sed, gv, plaympeg,

dog http://jl.photodex.com/dog/, galrey http://www.flexer.it/galrey/ and xcmd http://lince.cii.fc.ul.pt/xcmd/xcmd.html .
Also, it is highly beneficial to be able to understand and cope with MetaPost error messages
as FEATPOST has no protection against mistaken inputs. One probable cause of errors is the
use of variables with the name of procedures, like

X, Y, Z, N, rp, cb, ps

All other procedure names have six or more characters.
The user must be aware that MetaPost has a limited arithmetic power and that the

author has limited programming skills, which may lead to unperfect 3D figures, very long
processing time or shear bugs. It’s advisable not to try very complex diagrams at first and
it’s recommended to keep 3D coordinates near order 1 (default MetaPost units).

All three-dimensional FEATPOST macros are build apon the MetaPost color variable
type. It looks like this:

(red,green,blue)

Its components may, nevertheless, be arbtitrary numbers, like:

1

http://jl.photodex.com/dog/
http://www.loria.fr/~roegel/TeX/mousson2005.pdf
http://www-math.univ-poitiers.fr/~phan/m3Dplain.html
http://directory.fsf.org/GNU/3DLDF.html
http://robert.silve.free.fr/latex/metapost3D/
http://asymptote.sourceforge.net/
http://www.povray.org/
http://www.blender3d.org/
http://jl.photodex.com/dog/
http://www.flexer.it/galrey/
http://lince.cii.fc.ul.pt/xcmd/xcmd.html

Figure 1: Example that uses kindofcube.

(X,Y,Z)

So, the color type is adequate to define not only colors but also 3D points and vectors.

2 Small Tutorial

One very minimalistic example program could be:

beginfig(1);

cartaxes(1,1,1);

endfig;

end;

where cartaxes is a FEATPOST macro that produces the Cartesian referential.
One small example program may be:

f := 5.4*(1.5,0.5,1);

Spread := 30;

beginfig(1);

numeric gridstep, sidenumber, i, j, coord, aa, ab, ac;

color pa;

gridstep = 0.9;

sidenumber = 10;

coord = 0.5*sidenumber*gridstep;

for i=0 upto sidenumber:

for j=0 upto sidenumber:

pa := (-coord+j*gridstep,-coord+i*gridstep,0);

aa := uniformdeviate(360);

ab := uniformdeviate(180);

ac := uniformdeviate(90);

kindofcube(false, false, pa, aa, ab, ac, 0.4, 0.4, 0.9);

endfor;

endfor;

endfig;

end.

where kindofcube is a FEATPOST macro that produces a rectangular prism (cuboid).
The main variable of any three-dimensional figure is the point of view. FEATPOST uses

the variable f as the point of view. Spread is another global variable that controls the size of
the projection.

Another example may be:

f := (13,7,3.5);

Spread := 35;

beginfig(1);

2

numeric i, len, wang, reflen, frac, coordg;

numeric fws, NumLines, inray, outay;

path conepath, cira, cirb, ella, ellb, tuba, tubb, tubc;

color axe, aroc, cubevertex, conecenter, conevertex;

color allellaxe, ellaaxe, ellbaxe, pca, pea, pcb, peb;

frac := 0.5;

len := 0.6;

wang := 60;

axe := (0,cosd(90-wang),sind(90-wang));

fws := 4;

reflen := 0.2*fws;

outay := 0.45*fws;

inray := 0.7*outay;

coordg := frac*fws;

NumLines := 30;

HoriZon := -0.5*fws;

setthestage(0.5*NumLines, 2*fws);

cubevertex = (0.12*fws,-0.5*fws,-0.5*fws);

kindofcube(false,true,cubevertex,180,0,0,0.65*fws,0.2*fws,fws);

aroc := outay*(0,cosd(wang),sind(wang))-0.5*(0,fws,fws);

rigorousdisc(inray, true, aroc, outay, axe*len);

allellaxe := reflen*(0.707, 0.707, 0);

ellaaxe := reflen*(0.707, -0.707, 1.0);

ellbaxe := reflen*(-0.707, 0.707, 1.0);

conecenter = (coordg, coordg, -0.5*fws);

pca := (coordg, -coordg, -0.5*fws);

pcb := (-coordg, coordg, -0.5*fws);

pea := (coordg, -coordg, 0.9*fws);

peb := (-coordg, coordg, 0.9*fws);

cira := goodcirclepath(pca, blue, reflen);

cirb := goodcirclepath(pcb, blue, reflen);

ella := ellipticpath(pea, allellaxe, ellaaxe);

ellb := ellipticpath(peb, allellaxe, ellbaxe);

tuba := twocyclestogether(cira, ella);

tubb := twocyclestogether(cirb, ellb);

tubc := twocyclestogether(ella, ellb);

unfill tubb; draw tubb;

unfill tubc; draw tubc;

unfill tuba; draw tuba;

conevertex = conecenter + (-3.5*reflen, 0, 0.8*fws);

verygoodcone(false,conecenter,blue,reflen,conevertex);

endfig;

end.

where we find a rigorousdisc and a verygoodcone (the nicest FEATPOST macros) in addition
to setthestage, twocyclestogether and kindofcube.

2.1 Mechanics

The following is the sequence of steps necessary to produce the diagrams.

1. There are two methods that one can use to instruct MetaPost to process the TeX parts
of the input file with LaTeX instead of plain TeX. One is to put a first line containing
just

%LaTeX

in the file. This is the simplest method, but it doesn’t work on all systems. Alternately,
you can set the environment variable TEX to ”latex”, like:

3

Figure 2: Example that uses rigorousdisc and verygoodcone.

export TEX=latex

or run mpost with a command-line option, like:

mpost --tex=latex myfile.mp

(this text was originally written by Brooks Moses)

2. Make your MetaPost program know FEATPOST macros. This may be accomplished in
two ways:

• Insert the line:

input featpost3Dplus2D;

at the beginning of your program and then enter the shell command

mpost yourprogram.mp

. This works only if the file featpost3Dplus2D.mp is in a standard location.

• Pre-compile the macros into a mem file, for instance:

mpost -ini featpost

and then run your program with

mpost -mem featpost yourprogram.mp

3. If your program contains LaTeX text you may insert, at the beginning, the lines

verbatimtex

\documentclass{article}

\begin{document}

etex

and at the end

verbatimtex

\end{document}

etex

or make use of the

latexmp http://www.ctan.org/tex-archive/graphics/metapost/contrib/macros/latexmp/

package.

4. Pass the produced figure(s) through dvips if they contain any text. You may do this
with the provided shell script laproof.

laproof yourprogram N

where N is the figure number. This script produces an EPS figure that may be viewed
with gv but that should not be inserted in LaTeX documents. Insert the original fig-
ure in LaTeX documents. Instead of laproof you may just as well use MPS2EPS

http://www.ida.liu.se/~joned/download/mps2eps/ , mpsproof http://www.ctan.org/tex-archive/graphics/metapost/contrib/misc/

or metapost.pl http://www.iee.et.tu-dresden.de/~fimmel/metapost.html .

4

http://www.ctan.org/tex-archive/graphics/metapost/contrib/macros/latexmp/
http://www.ida.liu.se/~joned/download/mps2eps/
http://www.ctan.org/tex-archive/graphics/metapost/contrib/misc/
http://www.iee.et.tu-dresden.de/~fimmel/metapost.html

2.2 Main Features

2.2.1 Perspectives

FEATPOST can do three kinds of perspective.

f := (1.2 , 2.0 , 1.6);

Spread := 75;

V1 := (1,1,1);

V2 := (-1,1,1);

V3 := (-1,-1,1);

V4 := (1,-1,1);

V5 := (1,1,-1);

V6 := (-1,1,-1);

V7 := (-1,-1,-1);

V8 := (1,-1,-1);

makeface1(1,2,3,4);makeface2(5,6,7,8);

makeface3(1,2,6,5);makeface4(2,3,7,6);

makeface5(3,4,8,7);makeface6(4,1,5,8);

makeline1(1,7);makeline2(2,8);

makeline3(3,5);makeline4(4,6);

beginfig(1);

ParallelProj := true;

SphericalDistortion := false;

draw_all_test(red,true);

endfig;

beginfig(2);

ParallelProj := false;

SphericalDistortion := false;

draw_all_test(green,true);

endfig;

beginfig(3);

ParallelProj := false;

SphericalDistortion := true;

PrintStep := 5;

draw_all_test(blue,true);

endfig;

end;

2.2.2 From 3D to 2D

The most important macro is rp that converts 3D points to two-dimensional (2D) rigorous,
orthogonal or fish-eye projections. To draw a line in 3D-space try

draw rp(a)--rp(b);

where a and b are points in space (of color type). But if you’re going for fish-eye it’s better
to

draw pathofstraightline(a,b);

If you don’t know, leave it as

drawsegment(a,b);

2.2.3 Angles

When FEATPOST was created its main ability was to mark and to calculate angles. This is
done with the macros angline and getangle as in the following program:

5

Figure 3: Orthogonal perspective.

Figure 4: Rigorous perspective.

Figure 5: Fish-eye perspective.

6

x
y

z

76.63591

Figure 6: Example that uses cartaxes, angline and getangle.

f := (5,3.5,1);

beginfig(2);

cartaxes(1,1,1);

color va, vb, vc, vd;

va = (0.29,0.7,1.0);

vb = (X(va),Y(va),0);

vc = N((-Y(va),X(va),0));

vd = (0,Y(vc),0);

drawarrow rp(black)--rp(va);

draw rp(black)--rp(vb)--rp(va) dashed evenly;

draw rp(vc)--rp(vd) dashed evenly;

drawarrow rp(black)--rp(vc);

squareangline(va, vc, black, 0.15);

angline(va,red,black,0.75,decimal getangle(va,red),lft);

endfig;

2.2.4 Intersections

The most advanced feature of FEATPOST is the ability to calculate the intersections of planar
and convex polygons1. It can draw the visible part of arbitrary sets of polygons as in the
following program:

numeric phi;

phi = 0.5*(1+sqrt(5));

V1 := (1, phi,0);V2 := (-1, phi,0);

V3 := (-1,-phi,0);V4 := (1,-phi,0);

V5 := (0, 1, phi);V6 := (0,-1, phi);

V7 := (0,-1,-phi);V8 := (0, 1,-phi);

V9 := (phi,0, 1);V10:= (phi,0,-1);

V11:= (-phi,0,-1);V12:= (-phi,0, 1);

makeface1(1,2,3,4);makeface2(5,6,7,8);

makeface3(9,10,11,12);

beginfig(1);

sharpraytrace;

endfig;

end

2.2.5 Coming back to 3D from 2D

It is now possible to do an ”automatic perspective tuning” with the aid of macro photoreverse

which is under development. Please, refer to example photoreverse.mp and to FeatPost

1Unfortunately, this is also the most ”bugged” feature.

7

Figure 7: Example that uses sharpraytrace.

371
375

416

44

26

Figure 8: Example that uses photoreverse. It may not work when vertical lines are not vertical

in average on the photo.

Deeper Technicalities http://matagalatlante.org/nobre/hyt/technicaldrawfromphoto.html .

Coming back to 3D from 1D Using the same algorithm of photoreverse, the macro
improvertex allows one to approximate a point in 3D-space with given distances from three
other points (an initial guess is required).

3 Reference Manual

Some words about notation. The meaning of macro, function, procedure and routine is the
same. Global variables are presented like this:

vartype var, anothervar

anothervartype yetanothervar

Explanation of var, anothervar and yetanothervar. vartype can be any one of MetaPost types
but the meaning of color is a three-dimensional point or vector, not an actual color like
yellow, black or white. If the meaning is an actual color then the type will be colour. All
global variables have default values.

Functions are presented like this:

• returntype function() Explanation of function. returntype can be any one of MetaPost
types plus global, draw or drawlabel. global means that the function changes some of the
global variables. draw means that the function changes the currentpicture. drawlabel
means that the function changes the currentpicture and adds text to it.

8

http://matagalatlante.org/nobre/hyt/technicaldrawfromphoto.html

Figure 9: Figure that uses SphericalDistortion:=true and rigorousdisc.

1. type1 Explanation of the first argument. The type of one argument can be any one
of MetaPost types plus suffix or text.

2. type2 Explanation of the second argument. There is the possibility that the function
has no arguments. In that case the function is presented like ”returntype function”.

3. Etc.

3.1 Global variables

boolean ParallelProj

boolean SphericalDistortion

Kind of projection calculated by rp. By default projections are rigorous but if ParallelProj
is set true then parallel lines remain parallel in the projection. It is the same as placing the
point of view infinitely far without loosing sight. If SphericalDistortion is set true there
will be a distortion coming from: (i) the projection being done on a sphere of center f and
(ii) this sphere being plaited onto the paper page.

color f, viewcentr

The point of view is f. The plane or sphere of projection contains the center of view viewcentr.
The axis parallel to zz that contains the viewcentr is projected on a vertical line.

numeric Spread

pair ShiftV, OriginProjPagePos

numeric PageWidth

numeric PageHeight

These variables control the placement of the projection on the paper. Spread is the mag-
nification and ShiftV is the position of the viewcentr projection on the paper. But, if at
some point in your program you introduce produce auto scale then the currentpicture

will be centered at OriginProjPagePos and scaled to fit inside a rectangle of PageWidth by
PageHeight.

color V[]

color L[]p[]

color F[]p[]

Vertexes, lines and faces. The idea here is to draw polygons and/or arbitrary lines in 3D space.
Defining the polygons and the lines can be a bit tedious as FEATPOST is not interactive. First,
one defines a list of the vertexes (V[]) that define the polygons and/or the lines. There is a
list of polygons and a list of lines. Each polygon (F[]p[]) or line (L[]p[]) is itself a list of
vertexes. All vertexes of the same poligon should belong to the same plane.

numeric NL

numeric npl[]

numeric NF

numeric npf[]

9

Number of lines, number of vertexes of each line, number of faces, number of vertexes of each
face.

numeric PrintStep

Printstep is the size of iterative jumps along lines. Used by lineraytrace, faceraytrace
and pathofstraightline. Big Printsteps make fast raytracings.

boolean FCD[]

colour TableC[]

numeric TableColors

numeric FC[]

colour HigColor

colour SubColor

color LightSource

FCD means ”face color defined”. The draw invisible macro draws polygons in colour, if it
is defined. The colour must be selected from the table of colours TableC that has as many
as TableColors. The colour FC of each polygon will depend on its position relatively to
LightSource where we suppose there is a lamp that emits light coloured HigColor. Further-
more the colour of each polygon may be modified if it belongs to a functional or parametric
surface. In this case, if we are looking at the polygon from below than SubColor is subtracted
from its colour.

numeric RopeColorSeq[]

numeric RopeColors

These are used by ropepattern.

numeric TDAtiplen

numeric TDAhalftipbase

numeric TDAhalfthick

These control the shape of Three-Dimensional Arrows.

boolean ShadowOn

numeric HoriZon

When ShadowOn is set true, some objects can cast a black shadow on a horizontal plane of
Z coordinate equal to HoriZon (an area from this plane may be drawn with setthestage) as
if there is a punctual source of light at LightSource. The macros that can produce shadows,
in addition to their specific production, are

• emptyline

• rigorousdisc

• verygoodcone

• tropicalglobe

• whatisthis

• kindofcube

• draw all test

• fill faces

• positivecharge

All macros that contain shadow in their name calculate the location of shadows (using
cb).

path VGAborder

This path and the macro produce vga border are meant to help you clip the currentpicture
to a 4:3 rectangle as in a movie frame.

pair PhotoPair[]

color PhotoPoint[]

numeric PhotoMarks

These are used by photoreverse.

10

pen ForePen, BackPen

path CLPath

numeric NCL

These are used by closedline.

3.2 Definitions

• global makeline@#(text1)

• global makeface@#(text1)

Both of these functions ease the task of defining lines and polygons. Just provide a list of
vertexes in the right sequence for each polygon and/or line. Suppose a tetrahedron

V3:=(+1,-1,-1);V2:=(-1,+1,-1);

V4:=(+1,+1,+1);V1:=(-1,-1,+1);

makeface2(1,2,3);makeface3(1,2,4);

makeface1(3,4,1);makeface4(3,4,2);

The number in the last makeface or last makeline procedure name must be the number of
polygons or lines. All polygons and lines from 1 upto this number must be defined but the
sorting may be any of your liking.

3.3 Macros

3.3.1 Very Basic Macros

• numeric X() Returns the first coordinate of a point or vector (of color type). Replaces
redpart.

• numeric Y() Returns the second coordinate of a point or vector. Replaces greenpart.

• numeric Z() Returns the second coordinate of a point or vector. Replaces bluepart.

• draw produce auto scale The currentpicture is centered in, and adjusted to the size
of, an A4 paper page. This avoids the control of Spread and ShiftV.

• string cstr() Converts a color into its string. Usefull in combination with getready.

• string bstr() Converts a boolean expression into its string. Usefull in combination with
getready.

3.3.2 Vector Calculus

• color N() Unit vector. Returns black (the null vector) when the argument has null
norm. The ”N” means ”normalized”.

• numeric cdotprod() Dot product of two vectors.

• color ccrossprod() Cross product of two vectors.

• numeric ndotprod() Cossine of the angle beetween two vectors.

• color ncrossprod() Normalized cross product of twovectors.

• numeric conorm() Euclidean norm of a vector.

• numeric getangle() Angle beetween two vectors.

• pair getanglepair() Orientation angles of a vector. The first angle (xpart) is mea-
sured beetween the vector projection on the XY plane and the X axis. The second angle
(ypart)is measured beetween the vector and its projection on the XY plane. This may
be usefull to find the arguments of kindofcube

• color eulerrotation() Three-dimensional rotation of a vector. See the figure explaining
kindofcube to visualize the following movement: (i) grab the X component of the vector;
(ii) rotate it on the XY plane as much as the first argument; (iii) raise it up as much as
the second argument; and (iv) turn it around as much as the third argument.

1. numeric Angle of rotation around the Z component.

11

Figure 10: Figure that uses signalvertex.

2. numeric Angle of rotation around the rotated Y component.

3. numeric Angle of rotation around the two times rotated X component.

4. color Vector to be rotated.

• color randomfear Generates a randomly oriented unit vector.

3.3.3 Projection Macros

• pair rp() Converts spatial positions into planar positions on the paper page. The con-
version considers the values of the following global variables: viewcentr, ParallelProj,
SphericalDistortion, Spread and ShiftV. When both ParallelProj and SphericalDistortion

are false it won’t work if either (i) the vectors f-viewcentr and f-R are perpendicular
(R is the argument) or (ii) f and viewcentr share the same X and Y coordinates.

1. color Spatial position.

• color cb() Calculates the position of the shadow of a point. Uses HoriZon and LightSource.

1. color Point position.

• color projectpoint() Calculates the intersection beetween a plane and a straight line.
The plane contains a given point and is perpendicular to the line connecting the LightSource
and this same point. The line is defined by another given point and the LightSource.
Summary: projectpoint returns the projection of the second argument on a plane that
contains the first argument. Can be used to draw shadows cast on generic planes.

1. color Origin of the projection plane.

2. color Point to be projected.

• color lineintersectplan() Calculates the intersection beetween a generic plane and a
straight line. The plane contains a given point and is perpendicular to a given vector.
The line contains a given point and is parallel to a given vector.

1. color Point of the line.

2. color Vector parallel to the line.

3. color Point of the projection plane.

4. color Vector perpendicular to the projection plane.

3.3.4 Plain Basic Macros

• draw signalvertex() Draws a dot sized inversely proportional to its distance from the
viewpoint f.

1. color Location.

2. numeric Factor of proportionality (”size of the dot”).

3. colour Colour of the dot.

12

Figure 11: Figure that uses emptyline. The junction point of two different lines is indicated by

an arrow. Note the unperfection on the top right, inside the upper turn.

• path pathofstraightline() When using SphericalDistortion:=true, straight lines
look like curves. This macro returns the curved path of a straight line beetween two
points. This path will have a greater length (”time”) when PrintStep is made smaller.

• draw drawsegment() Alternative pathofstraightline that avoids the calculation of
all the intermediate points when SphericalDistortion:=false.

• drawlabel cartaxes() Cartesean axis with prescribed lenghtes and apropriate labels.

1. numeric Length of the X axis.

2. numeric Length of the Y axis.

3. numeric Length of the Z axis.

• draw emptyline() This procedure produces a sort of a tube that can cross over itself. It
facilitates the drawing of, for instance, thick helical curves but it won’t look right if the
curves are drawn getting apart from the point of view. Please, accept this inconveniance.
As like many other FEATPOST macros this one can produce visually correct diagrams
only in limited conditions. Can cast a shadow.

1. boolean Choose true to join this line with a previously drawn line.

2. numeric Factor of proportionality (”diameter of the tube”). The tubes are just
sequences of dots drawn by signalvertex.

3. colour Colour of the tube border.

4. colour Colour of the tube.

5. numeric Total number of dots on the tube line.

6. numeric Fraction of the tube diameter that is drawn with the tube colour.

7. numeric This is the number of dots that are redrawn with the colour of the tube
for each drawn dot with the color of the tube border. Usually 1 or 2 are enough.

8. text This is the name a function that returns a 3D point of the line for each value
of a parameter in beetween 0 and 1.

• draw closedline() This procedure produces a tube that can cross over itself. It facil-
itates the drawing of, for instance, thick helical curves but it won’t look right as its
thickness does not change with the distance from the point of view. The drawing is
entirely done in two dimensions, so the tube diameter depends on the global variables
ForePen and BackPen. There can be more than one line in a figure but all get the same
diameter. When calling closedline() in different figures of the same program you must
reinitialize both NCL and Nobjects (because closedline() uses getready()).

1. boolean Value of ”the line is closed”.

2. numeric Total number of path segments on the tube line.

3. numeric Use 0.5 or more.

4. numeric Use 0.75 or more.

13

� �
���

��� �
�

	
�

B

���

����

� �

Figure 12: Figure that uses anglinen and rigorouscircle.

5. text This is the name of a function that returns a 3D point of the line for each
value of a parameter in beetween 0 and 1.

• drawlabel angline() Draws an arch beetween two straight lines with a common point
and places a label near the middle of the arch (marks an angle). Note that the arch is
not circular.

1. color Point of one line.

2. color Point ot the other line.

3. color Common point.

4. numeric Distance beetween the arch and the common point.

5. picture Label.

6. suffix Position of the label relatively to the middle of the arch. May be one of
lft, rt, top, bot, ulft, urt, llft and lrt.

• drawlabel anglinen() The same as the previous function but the sixth argument is
numeric: 0=rt; 1=urt; 2=top; 3=ulft; 4=lft; 5=llft; 6=bot; 7=lrt; any other
number places the label on the middle of the arch.

• draw squareangline() This is supposed to mark 90 degree angles but works for any
angle value.

1. color Point of one line.

2. color Point ot the other line.

3. color Common point.

4. numeric Distance beetween the ”arch” and the common point.

• path rigorouscircle() 3D circle. The total ”time” of this path is 8. This small number
makes it easy to select parts of the path. The circle is drawn using the ”left-hand-rule”.
If you put your left-hand thumb parallel the circle axis then the other left-hand fingers
curl in the same sense as the circle path. This path allways starts, approching the view
point, from a point on a diameter of the circle that projects orthogonaly to its axis, and
rotating around the axis in the way of the left-hand-rule.

1. color Center of the circle.

2. color Direction orthogonal to the circle (circle axis).

3. numeric Radius of the circle.

• draw tdarrow() Draws a flat arrow that begins at the first argument and ends at
the second. The shape of the arrow is controled by the global variables TDAtiplen,

TDAhalftipbase, TDAhalfthick.

• path twocyclestogether() This macro allows you to draw any solid that has no vertexes
and that has two, exactly two, planar cyclic edges. In fact, it doesn’t need to be a solid.
Just provide the pathes of both cyclic edges as arguments but note that the returned
path is polygonal. In order to complete the drawing of this solid you have to choose

14

x
y

z

�
�
�

�

����� 	

Figure 13: Example that uses labelinspace.

one of the edges to be drawn immediatly afterwards. This is done automatically by the
whatisthis macro for the case of two parallel and concentric ellipses.

• path ellipticpath() Produces an elliptic path in 3D space.

1. color Position of the center.

2. color Major or minor axis.

3. color The other axis.

• drawlabel labelinspace() Draw some 2D picture on some 3D plane (only when ParallelProj:=true).

1. color Position for the lower-left corner.

2. color Orientation of the picture’s bottom edge.

3. color Orientation of the picture’s letf edge.

4. text 2D picture’s name.

3.3.5 Standard Objects

• path goodcirclepath() Another 3D circle macro. More rigorous than rigorouscircle

but when the direction ortogonal to the circle is almost orthogonal to the line viewpoint--center
it doesn’t work correctly. The total ”time” of this path is 36.

1. color Center of the circle.

2. color Direction ortogonal to the circle.

3. numeric Radius of the circle.

• draw spatialhalfsfear() An hemisphere. Doesn’t work with f inside it.

1. color Center.

2. color Vector ortogonal to the frontier circle and pointing out of the concavity.

3. numeric Radius of the (hemi)sphere.

• path spatialhalfcircle() And yet another 3D circle macro. Only the visible or the
hidden part. This is usefull to mark sections of cylinders or spherical major circles.

1. color Center of the circle.

2. color Direction ortogonal to the circle.

3. numeric Radius of the circle.

4. boolean The visible part is selected with true and the hidden with false.

• draw rigorousdisc() 3D opaque cylinder with/without a hole. Can cast a shadow
(without the hole).

1. numeric Ray of an axial hole.

2. boolean Option for completly opaque cylinder (true) or partial pipe (false) when
there is no hole. When the cylinder has an hole this option should be true.

15

Figure 14: Figure that uses tropicalglobe.

3. color Center of one circular base.

4. numeric Radius of both circular bases.

5. color Vector that defines the length and orientation of the cylinder. The addition
the third and fifth arguments should give the position of the center of the other
circular base.

• draw verygoodcone() 3D cone. Can cast a shadow.

1. bolean Option to draw dashed evenly the invisible edge (true) or not (false).

2. color Center of the circular base.

3. color Direction ortogonal to the circular base.

4. numeric Radius of the circular base.

5. color Position of the vertex

• path rigorousfearpath() 3D sphere. Simple but hard.

1. color Center position.

2. numeric Radius.

• draw tropicalglobe() Globe with minor circles. Can cast a shadow.

1. numeric Number of marked latitudes.

2. color Center position.

3. numeric Radius

4. color Axis orientation.

• draw whatisthis() An elliptic frustum. Both edges are elliptic an have the same orien-
tation but one may be greater than the other. Can cast a shadow.

1. color Reference edge center.

2. color Major or minor axis.

3. color The other axis.

4. numeric Length of the original cylinder.

5. numeric Edges axis length ratio.

• draw kindofcube() Polyhedron with six orthogonal faces (cuboid).

1. boolean Also draw the invisible edges dashed evenly (true) or do not.

2. boolean The reference point may be a vertex (true) or the center(false).

3. color Reference point.

4. numeric Alpha1.

5. numeric Alpha2.

6. numeric Alpha3.

7. numeric L1. Length of the first side.

16

x

y

z

�

�

�

�

� ���

�	�

��

� �

� �

�

Figure 15: Figure that uses and explains kindofcube. Note that the three indicated angles may

be used as arguments of eulerrotation.

8. numeric L2. Length of the second side.

9. numeric L3. Length of the third side.

These arguments are represented in the next figure.

• draw setthestage() Produces an horizontal square made of squares. Its Z coordinate
is defined by HoriZon.

1. numeric Number of squares in each side.

2. numeric Size of each side.

• draw setthearena() Produces an horizontal circle made of circles. Its Z coordinate is
defined by HoriZon. Due to the fact that the center of a circle is not on the center of its
central perspective projection, this may look a bit strange.

1. numeric Number of circles on a diameter.

2. numeric Diameter.

• draw smoothtorus() Toxic donut (not to be eaten). Produces an error message when
f is close to the table.

1. color Center.

2. color Direction orthogonal to the torus plane.

3. numeric Big ray.

4. numeric Small ray.

3.3.6 Composed Objects

• draw positivecharge() Draws a sphere with a plus or minus sign on the surface. The
horizontal segment of the sign is drawn on the horizontal plane that contains the sphere
center. The middle point of this segment is on a vertical plane containing the viewpoint.

1. boolean Selects the sign (true means positive).

2. color Position of the center.

3. numeric Sphere ray.

• draw simplecar() Draws a cuboid and four discs in a configuration ressembling an
automobile. The first three arguments of simplecar are the same as the the last seven
arguments of kindofcube but grouped in colors.

1. color Center of the cuboid that constitutes the body of the car..

2. color Angles defining the orientation of the car (see kindofcube).

3. color Dimensions of the car.

4. color Characteristics of the front wheels. redpart-distance from the front. greenpart-
width of the front wheels (length of the cylinders). bluepart-wheel ray.

5. color Same as above for the rear wheels

17

Figure 16: Figure that uses positivecharge, getready and doitnow.

Figure 17: Figure that uses setthearena and simplecar.

18

3.3.7 Shadow Pathes

• draw signalshadowvertex() Draws the shadow of a signalvertex dot.

1. color Location of the light-blocking dot.

2. numeric Factor of proportionality (”size of the dot”).

3. colour Colour of the dot.

• path ellipticshadowpath() Produces the shadow of an elliptic path.

1. color Position of the center.

2. color Major or minor axis.

3. color The other axis.

• path circleshadowpath() Produces the shadow of a circle.

1. color Center of the circle.

2. color Direction ortogonal to the circle.

3. numeric Radius of the circle.

• path rigorousfearshadowpath() 3D sphere shadow.

1. color Center position.

2. numeric Radius.

3.3.8 Differential Equations

Before we proceed, be aware that solving differential equations (DE) is mainly an experimental
activity. The most probable result of a procedure that atempts to solve a DE is garbage. The
procedure may be unstable, the solution may be littered with singularities or something may
go wrong. If you don’t have a basic understanding of differential equations then skip this
section, please.

• path fieldlinepath() A vectorial field line is everywhere tangent to the field vectors.
Two different parallel fields have the same field lines. So the field only constrains the
direction of the field lines, not any kind of ”speed” and, therefore, it is recommended to
normalize the field before using this macro that contains a second-order Runge-Kutta
method implementation.

1. numeric Total number of steps.

2. color Initial position.

3. numeric Step (arc)length.

4. text Name of the function that returns a field vector for each 3D position.

• path trajectorypath() The acceleration of a particle in a conservative force field is
equal to the ratio (conservative force)/(particle mass). The acceleration is also equal
to the second order time derivative of the particle position. This produces a second
order differential equation that we solve using a second-order Runge-Kutta method
implementation.

1. numeric Total number of steps.

2. color Initial position.

3. color Initial velocity.

4. numeric Time step.

5. text Name of the function that returns a (force/mass) vector for each 3D position.

• path magnetictrajectorypath() The acceleration of a charged particle in a magnetic
field is equal to the ratio (magnetic force)/(particle mass) but the magnetic force depends
on both the velocity and the magnetic field. The acceleration is also equal to the second
order time derivative of the particle position. This produces a second order differential
equation that we solve using a fourth-order Runge-Kutta method implementation.

1. numeric Total number of steps.

2. color Initial position.

3. color Initial velocity.

4. numeric Time step.

5. text Name of the function that returns a (charge)*(magnetic field)/(partcle mass)
vector for each 3D position.

19

3.3.9 Renderers

• draw sharpraytrace Heavy procedure that draws only the visible part of all edges of
all defined faces. There’s no point in using this procedure when there are no inter-
sections beetween faces. Any how this will not work for non-convex faces nor when
SphericalDistortion:=true.

• draw lineraytrace() Draws only the visible part of all defined lines using sequences of
dots (signalvertex and PrintStep).

1. numeric Dot size.

2. colour Dot colour.

• draw faceraytrace() Draws only the visible part of all edges of all defined faces using
sequences of dots (signalvertex and PrintStep).

1. numeric Dot size.

2. colour Dot colour.

• draw draw all test() Draws all defined edges (and lines) in a correct way independently
of the kind of projection used. Can cast a shadow (but the shadow is not correct when
SphericalDistortion:=true).

1. boolean If true the lines are also drawn.

• draw fill faces() Unfills and draws all faces in the order they were defined (without
sorting). Can cast a shadow.

1. text Like the argument of drawoptions but used only inside this macro and only
for the edges.

• draw draw invisible() This is a fast way of removing hidden lines that doesn’t allow
for intersecting polygons nor polygons of very different area. It works by +sorting all
polygons by distance to f and then by ”filling” the polygons. This routine may be used
to draw graphs of 3D surfaces.

1. boolean If true polygons are sorted relatively to nearest vertex and, if false,
relatively to their mass center. Choose false for surface plots.

2. boolean If false then the polygons are painted with their FC colour modified by
LightSource. If true then the next two arguments are used and the polygons are
darkened proportionaly to their distance from f.

3. colour Colour of faces.

4. colour Colour of the edges.

• global getready() When you don’t want to edit the source of the MetaPost program,
to resort the objects so they’ll be drawn correctly, use this macro and the next.

1. string Command line that would draw some object. For instance: "rigorousfearpath(black,1);".

2. color Reference position of that object.

• draw doitnow The reference positions given as arguments of previous getready calls are
used to sort and draw the objects also given as string arguments to previous getready

calls. Remember to initialize Nobjects:=0; before a second figure.

3.3.10 Nematics (Direction Fields)

Nematics are the least ordered liquid crystals. Their configurations can be described by
direction fields (vector fields without arrows). The two following routines ease the task of
representing their configurations.

• global generatedirline() Defines a single straight line segment in a given position and
with a given orientation.

1. numeric Line index number.

2. numeric Angle beetween the X axis and the projection of the line on the XY plane.

3. numeric Angle beetween the line and the XY plane.

4. numeric Line (arc)length.

20

Figure 18: Figure that uses director invisible and generatedirline.

5. color Position of the line middle point.

• draw director invisible() This is a direction field renderer that can sort direction lines.
This routine draws straight lines of given ”thickness” beetween the first all the points
of all the L[]p[] lines. It is supposed to help you draw vector fields without arrows but
taking care of invisibility. The lines may be generated by generatedirline or by other
macros.

1. boolean When there is no need to sort lines you may use false here.

2. numeric ”Thickness” of the direction lines

3. boolean Use true for cyclic ”direction” lines.

3.3.11 Surface Plots

Many powerfull plotting packages like gnuplot http://www.gnuplot.info/ and gri http://gri.sourceforge.net/

are freely available. Because of this, FEATPOST surface plots are geared towards unusual fea-
tures like equilateral triangular grid, hexagonal domain and merging together functional and
parametric surface descriptions.

• draw hexagonaltrimesh() Plots a functional surface on a triangular or hexagonal
domain. Uses the LightSource.

1. boolean Select the kind of domain. true for hexagonal and false for triangular.
The domain is centered on the origin (black). When the domain is hexagonal two
of its corners are on the -YY axis. When the domain is triangular one of its corners
is on the X axis.

2. numeric Number of small triangles on each side of the triangular domain or three
times the number of small triangles on each side of the hexagonal domain.

3. numeric Length of the triangular domain side or three times the hexagonal domain
side.

4. text Name of the function that returns the Z coordinate of a surface point of
coordinates X and Y.

• global partrimesh() Defines a parametric surface that can be drawn with draw invisible.
In the following descriptions S and T are the parameters. Remember to initialize NF. The
surface is defined so that quadrangles are used whenever possible. If impossible, two
triangles are used but their orientation is selected to maximize the surface smoothness.
Also note that, unlike hexagonaltrimesh(), the spatial range you require to be visible
is always first reshaped into a cube and second compressed or extended vertically. How
much the cube is compressed or extended depends on the last numeric argument, the
compression factor for Z, meaning that the final height of the cube is 2/(compression
factor). Thanks to Sebastian Sturm for pointing the need to explain this.

1. numeric Number of T steps.

21

http://www.gnuplot.info/
http://gri.sourceforge.net/

Figure 19: Figure that uses hexagonaltrimesh.

2. numeric Number of S steps.

3. numeric Minimal T value.

4. numeric Maximal T value.

5. numeric Minimal S value.

6. numeric Maximal S value.

7. numeric Minimal X value.

8. numeric Maximal X value.

9. numeric Minimal Y value.

10. numeric Maximal Y value.

11. numeric Minimal Z value.

12. numeric Maximal Z value.

13. numeric Compression factor for Z values.

14. text Name of the function that returns a surface point (of color type) for each
pair (S,T).

22

	Introduction
	Small Tutorial
	Mechanics
	Main Features
	Perspectives
	From 3D to 2D
	Angles
	Intersections
	Coming back to 3D from 2D

	Reference Manual
	Global variables
	Definitions
	Macros
	Very Basic Macros
	Vector Calculus
	Projection Macros
	Plain Basic Macros
	Standard Objects
	Composed Objects
	Shadow Pathes
	Differential Equations
	Renderers
	Nematics (Direction Fields)
	Surface Plots

