What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

http://matagalatlante.org/UiTlecture.pdf

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D

References

The financial crisis is ravaging the economy and opinion-makers are calling for innovation as a solution. Many have forgotten that innovation is nothing but a side-effect of the old, well-established, classic scientific method.

This lecture is an attempt to remember what the scientific method is and how it works. A problem related with circle packing is used as a demonstrative example. Some applications in Materials Science are explored.

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

1. Introduction

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary References

1. Introduction

2. Answer

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary

	smallest number of circles that can
	cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves
	Introduction Definitions $1 (F_T \approx 0,785)$ Scientific Method Models
	Answer 2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish
	Go beyond 3D Summary
 ▲ 王 ▶ 王 = ● < ● 	References

(□) < □) < □</p>

What is the

- 2. Answer
 - 3. Go beyond

1. Introduction

	smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.
	Luís Nobre Gonçalves
	$\begin{array}{l} \mbox{Introduction} \\ \mbox{Definitions} \\ 1 \left(F_{\mathcal{T}} \approx 0,785 \right) \\ \mbox{Scientific Method} \\ \mbox{Models} \end{array}$
	Answer 2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish
	Go beyond 3D
	Summary
<日> (四) (종) (종) (종) (종) (종)	References

What is the

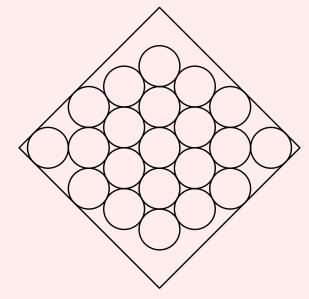
1. Introduction

2. Answer

3. Go beyond

4. Summary

1. Introduction


Answer
 Go beyond
 Summary
 References

	smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves
	Introduction Definitions $1(F_T \approx 0, 785)$ Scientific Method Models Answer 2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 200 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary References
《日》《聞》《四》《曰》 御言 ふるの	

What is the

smallest number of

Introduction

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D

References

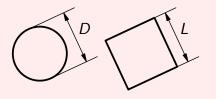
Faculdade de Ciências e Tecnologia

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models


Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D

Summary

References

Definitions

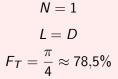
$$F = \frac{NA_{\bigcirc}}{A_{\square}} = \frac{N\pi \left(\frac{D}{2}\right)^2}{L^2(N,D)}$$

N is the the number of circles

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction


 $\begin{array}{l} \mbox{Definitions} \\ 1 \; (F_{T} \; \approx \; 0,785) \\ \mbox{Scientific Method} \\ \mbox{Models} \end{array}$

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary References

Target fraction of covered area (0,785)

 \bigcirc

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D

Deferences

To learn from reality

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves Definitions Scientific Method Models 2 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7.14 26 3D ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► To learn from reality
 - Avoid belief, bias and myth

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary

References

- To learn from reality
 - Avoid belief, bias and myth
- Sophisticated trial-and-error

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary

◆□> ◆□> ◆三> ◆三> ●□= のへで

	То	learn	from	reality
--	----	-------	------	---------

- Avoid belief, bias and myth
- Sophisticated trial-and-error
 - Everybody learns

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary

References

	Gonçalve
learn from reality	Introduction Definitions
Avoid belief, bias and myth histicated trial-and-error	1 ($F_T \approx 0.78$) Scientific Metho Models
Everybody learns Models	Answer 2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish
	Go beyond 3D
	Summary
	References

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

entific Method

To

Sop

	scientific method in action.
	Luís Nobre Gonçalves
 To learn from reality Avoid belief, bias and myth 	Introduction Definitions 1 ($F_T \approx 0,785$)
 Sophisticated trial-and-error 	Scientific Method Models
 Everybody learns Models should be simple, general and beautiful 	Answer 2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D
	Summary

References

What is the

smallest number of circles that can cover more area of a square than a single circle? An example of the

Models

Models are

- mental representations
- visualizations of uninitiated actions
- expectations about the unknown
- scenarios
- expressions

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Model

Answer

Models

Models are

- mental representations
- visualizations of uninitiated actions
- expectations about the unknown
- scenarios
- expressions
- ways to start, continue, assume, measure, facilitate, avoid common problems, interpret, classify, detect, solve, confirm, prove, explain, generalize, understand, use, teach and publish

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

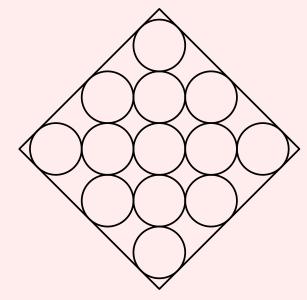
Answer

Models

Models are

- mental representations
- visualizations of uninitiated actions
- expectations about the unknown
- scenarios
- expressions
- ways to start, continue, assume, measure, facilitate, avoid common problems, interpret, classify, detect, solve, confirm, prove, explain, generalize, understand, use, teach and publish

A scientist works to improve not just one model but several.


What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

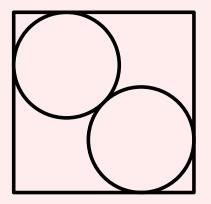
Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

Start at the beginning

What's the best way to reach the answer?


What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

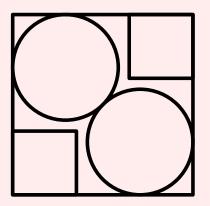
Answer

 $F_2 \approx 0,539$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction


Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D

Summary

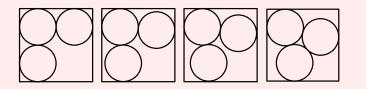
References

 $F_2 \approx F_T - 25\%$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction


Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D

References

3, 5

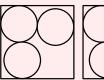
 $F_3 pprox 0,610$

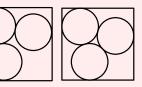
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

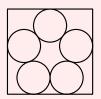
Introduction

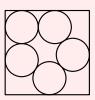
Definitions 1 ($F_T \approx 0.785$) Scientific Method Models


Answer


2 **3**, **5** 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary

References


3, 5



 $F_3\approx 0{,}610$

 $F_5 \approx 0,674$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 **3, 5** 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish **Go beyond** 3D

References

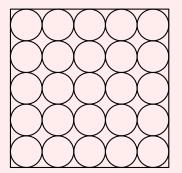
Start organizing the results

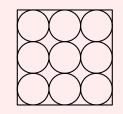
Luís Nobre Gonçalves

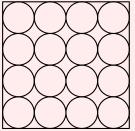
Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer


2 **3, 5** 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary


References


Perfect squares

 $F_{\Box} = F_T$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

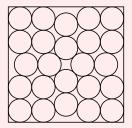
Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

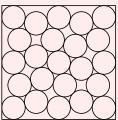
Answer

2 3, 5 1, 4, 9, 16, 25 3, 6, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D

Summary

References


◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >


Perfect squares -1 or -2

 $F_8\approx 0{,}731 \quad F_3\approx 0{,}610 \quad F_{15}\approx 0{,}762$

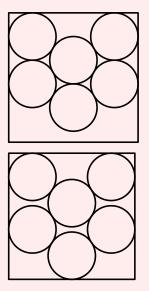
 $F_{24} \approx 0,775$ $F_{23} \approx 0,764$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

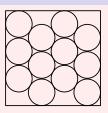
Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

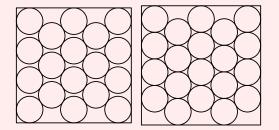

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary

References

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで


Squeezed horizontaly



What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves Models 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7,14 26 3D

Squeezed horizontaly

 $F_6\approx 0{,}664 \quad F_{12}\approx 0{,}738$

 $F_{18}\approx 0{,}755 \quad F_{20}\approx 0{,}780$

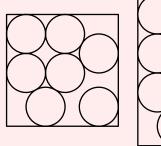
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

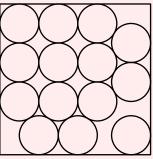
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 **6, 12, 18, 20** 7, 14 10, 11, 17, 19 13, 22 26 Finish **Go beyond** 3D


Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References

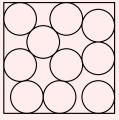
One free circle

$$F_7 \approx 0,670 \qquad F_{14} \approx 0,736$$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

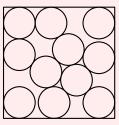
> Luís Nobre Gonçalves

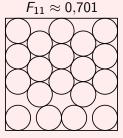
Introduction


Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 **7**, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary


References


Unclassified

 $F_{10} \approx 0.682$

 $F_{17} \approx 0,707$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Definitions Models

1, 4, 9, 16, 25 3, 8, 15, 24, 23 6. 12. 18. 20 7.14 10, 11, 17, 19 26 3D

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

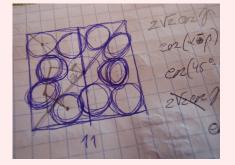
Introduction

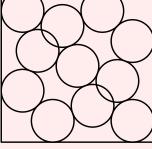
Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 **10, 11, 17, 19** 13, 22 26 Finish **Go beyond** 3D

References


What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.



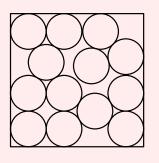
Introduction

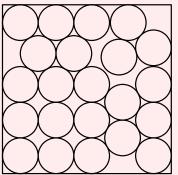
Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

- Make a simulation (it's cheaper than a real experiment)
- Constraints matter
- Different causes may have the same effect

Luís Nobre Gonçalves


Introduction


Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary References

Five free circles

 $F_{13} \approx 0.733$ $F_{22} \approx 0.772$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 **13**, 22 26 Finish **Go beyond** 3D **Summary**

References

	What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
< ㅁ > < 쿱 > < 흔 > < 흔 > 흔) 등 한 종(명)	26 Finish Go beyond 3D Summary References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 **26** Finish **Go beyond** 3D

Deferences

NO IDEA

	Observe	the	big	picture	
--	---------	-----	-----	---------	--

Pay attention to extremes

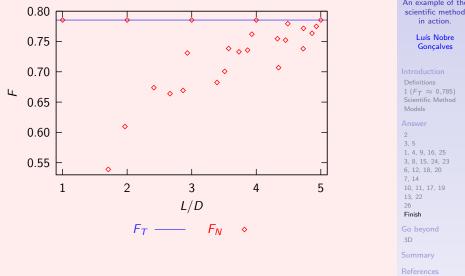
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

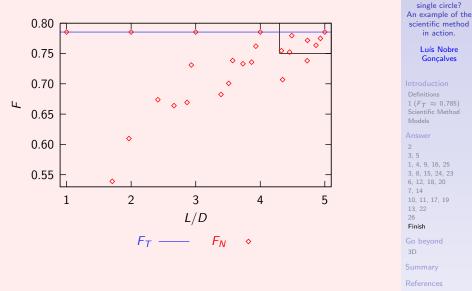
Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

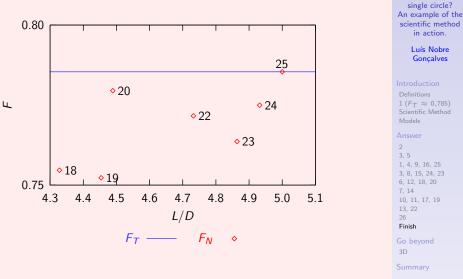
3D

Summary


Big picture

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

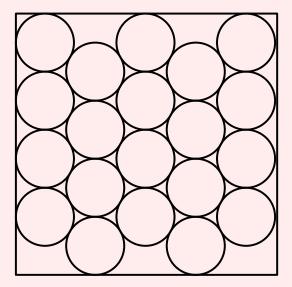
42


Big picture

What is the

smallest number of circles that can cover more area of a square than a

Extreme


References

What is the

smallest number of circles that can cover more area of a square than a

・ロト・日本・モト・モト 正正 のくで

20

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

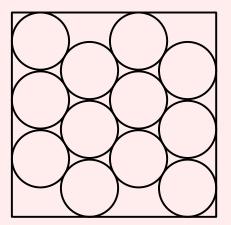
3D

Summary

Do you see a pattern?

Luís Nobre Gonçalves

Introduction


Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 **Finish** Go beyond

GO Deye 3D

Summary

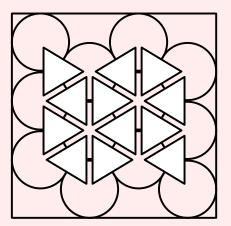
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

Confirm.

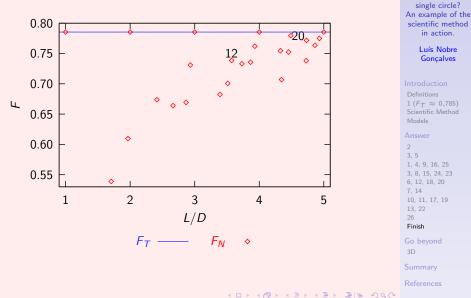
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

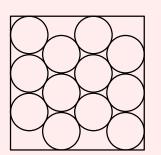
3D

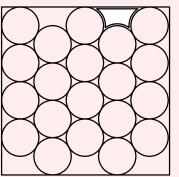
Summary

References

Both 20 and 12 are local maxima

What is the


smallest number of circles that can cover more area of a square than a


- Why are our efforts insufficient upto now?
- Don't go on without knowing why.

3D

Summary

Boundary effects

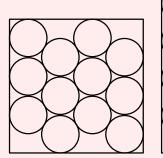
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

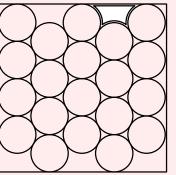
Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

3D


Summary

References

Boundary effects

Big voids at the boundary: +1Circles: +8

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

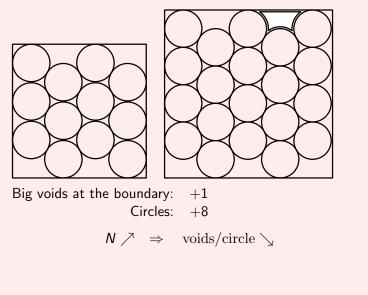
Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond


3D

Summary

References

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Boundary effects

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

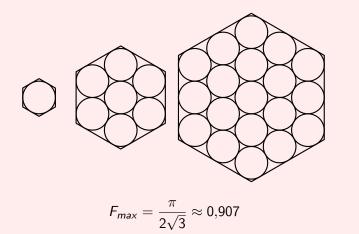
Summary

References

Using only this pattern, can we expect to succeed?

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves


Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary

Hexagonal configuration

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond


3D

Summary

References

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Hexagonal configuration

$$F_{max} = rac{\pi}{2\sqrt{3}} pprox 0,907$$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

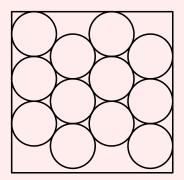
Go beyond

3D

Summary

References

Could we have skipped the initial work?


What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves Definitions Models 2 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7.14 26

Finish

Go beyond

3D

Summary

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

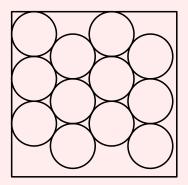
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

・ロト < 団ト < 三ト < 三ト < 三日 < のへで

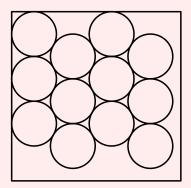
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 **Finish**

Go beyond

3D

Summary

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

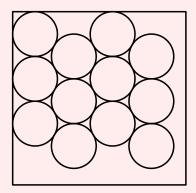
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

<ロ> < 回> < 回> < 三> < 三> < 三< つへぐ

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

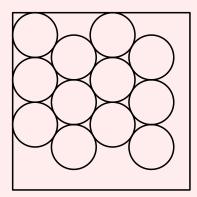
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

<ロ> < 回> < 回> < 三> < 三> < 三< つへぐ

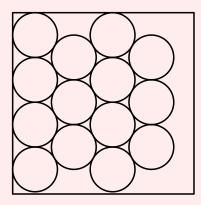
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

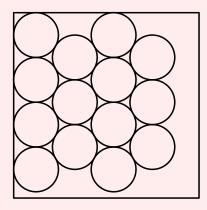
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

<ロ> < 回> < 回> < 三> < 三> < 三< つへぐ

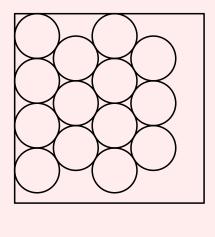
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 **Finish**

Go beyond

3D

Summary

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

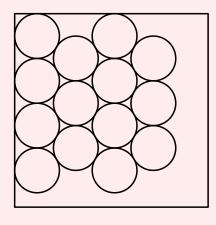
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 **Finish**


Go beyond

3D

Summary

References

・ロト < 団ト < 三ト < 三ト < 三日 < のへで

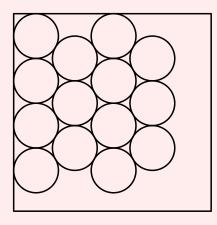
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 **Finish**

Go beyond

3D

Summary

References

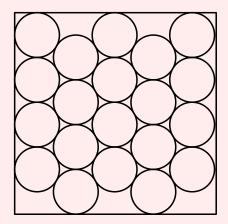
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

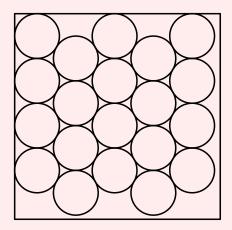
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

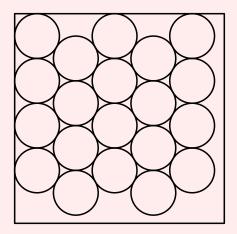
Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 **Finish**


Go beyond

3D

Summary

References

<ロ> < 回> < 回> < 三> < 三> < 三< つへぐ

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

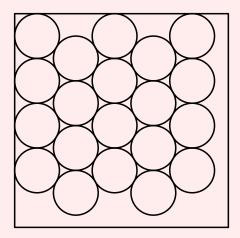
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

・ロト < 団ト < 三ト < 三ト < 三日 < のへで

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

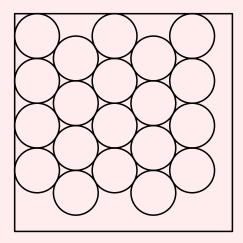
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

・ロト < 団ト < 三ト < 三ト < 三日 < のへで

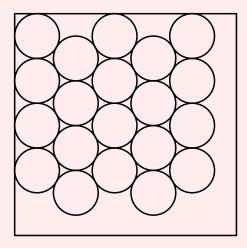
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

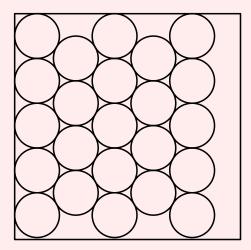
References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

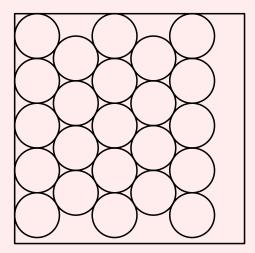
References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Goncalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

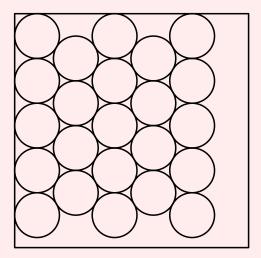
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

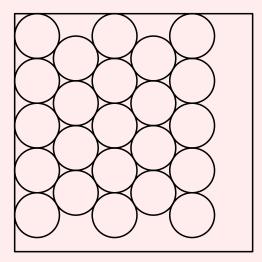
References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Goncalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

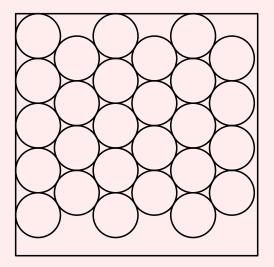
References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Goncalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

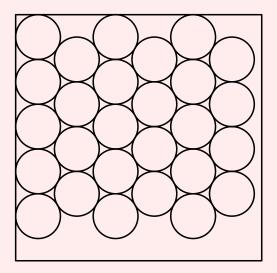
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

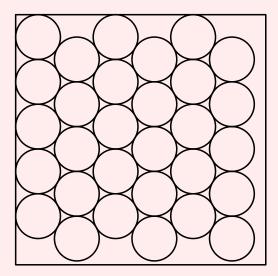
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

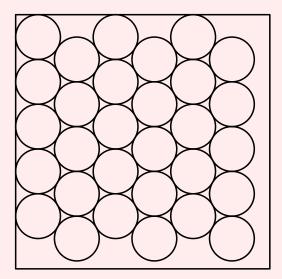
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

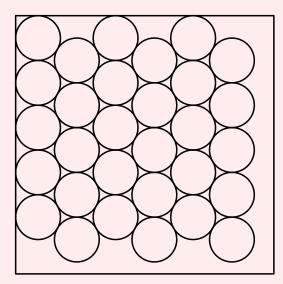
Go beyond

3D

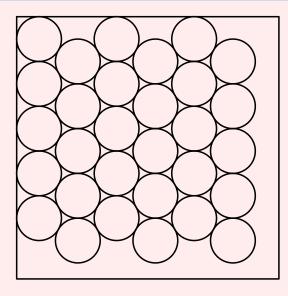
Summary

References

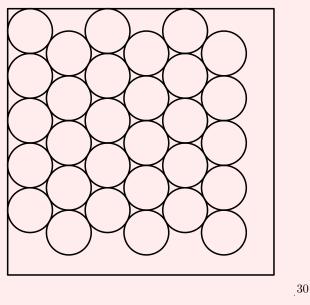
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves $1 (F_T \approx 0,785)$ Models 2 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7,14 26


Finish

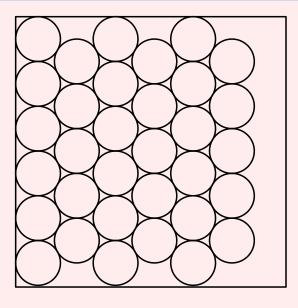
Go beyond


3D

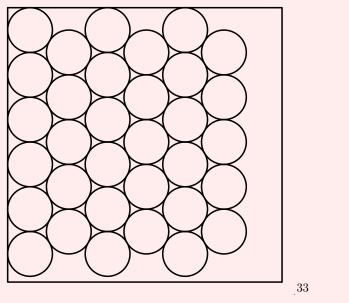
Summary


References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves $1 (F_T \approx 0,785)$ Models 2 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7,14 26 Finish 3D



What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves $1 (F_T \approx 0,785)$ Models 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7,14 10, 11, 17, 19 26 Finish 3D



What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves $1 (F_T \approx 0,785)$ Models 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7,14 10, 11, 17, 19

26 Finish Gobe 3D

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves $1 (F_T \approx 0,785)$ Models 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7,14 10, 11, 17, 19 26 Finish 3D

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

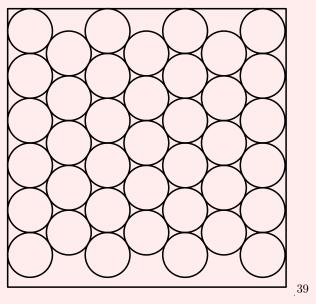
Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

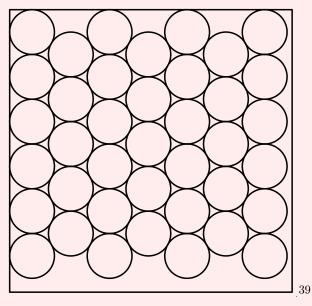
◆□ > ◆□ > ◆目 > ◆目 > 目目 のへで

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models


Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyor 3D

Summary

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

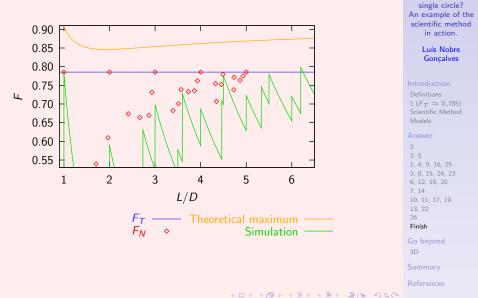
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

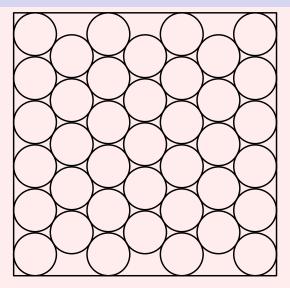
2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


3D

Summary

References

●●● 単則 《田》 《田》 《日》


Graph

What is the

smallest number of circles that can cover more area of a square than a

39

 $F_{39}\approx 0{,}811$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

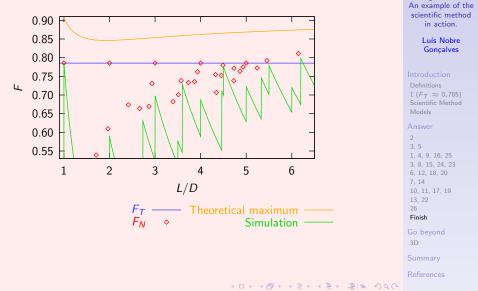
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

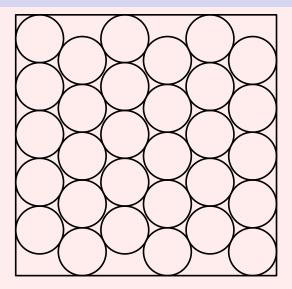
Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary


References

Optimize

What is the

smallest number of circles that can cover more area of a square than a single circle? 30

 $F_{30} \approx 0,792$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

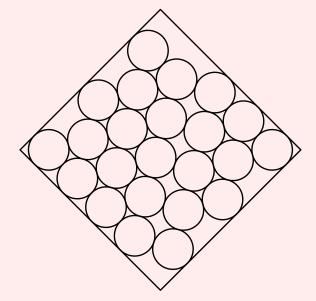
What's the use of this?

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

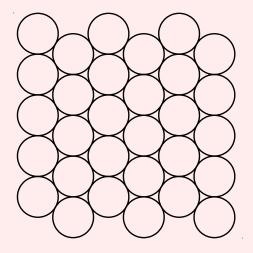
Go beyond

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models


Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

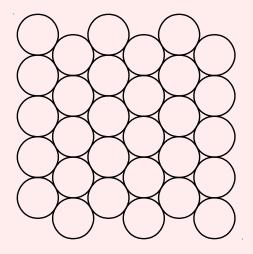
Summary

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models


Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

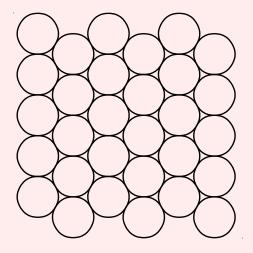
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

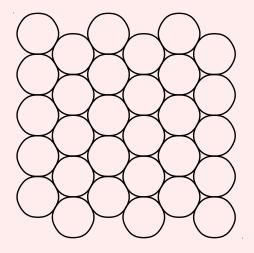
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

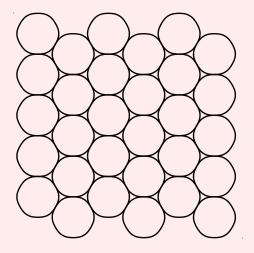
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

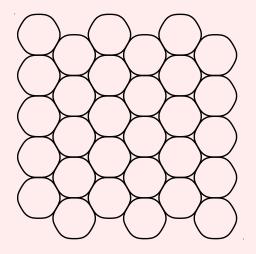
References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models


Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

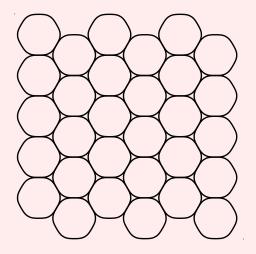
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

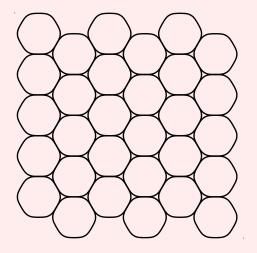
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

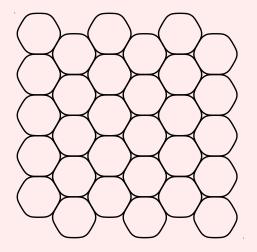
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

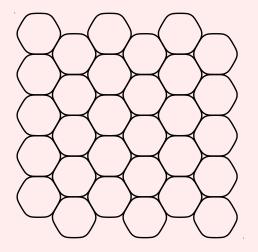
References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models


Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

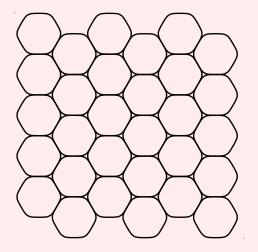
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

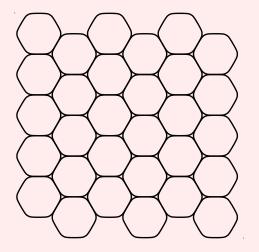
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

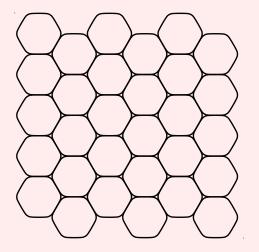
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

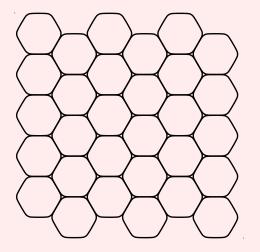
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

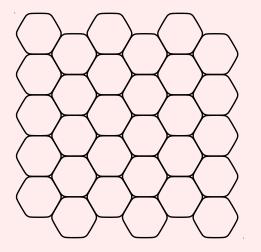
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

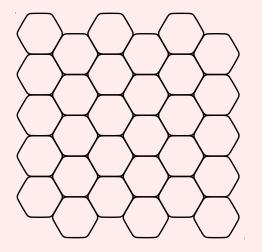
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

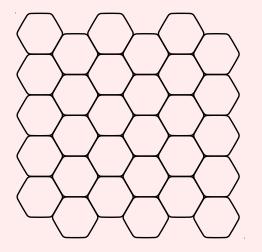
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

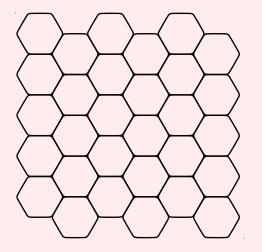
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

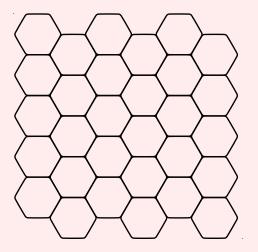
What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

The hexagonal configuration minimizes "free energy".

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

2D foam

red beryl

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

bubble-raft

honeycomb

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

References

ommatidia

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

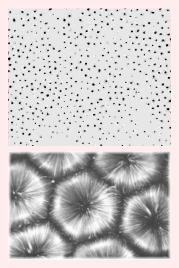
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

giant's causeway

dusty plasma

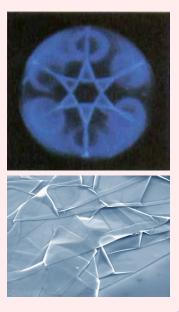
Rayleigh-Bénard convection

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models


Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

hex. blue phase

graphene

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

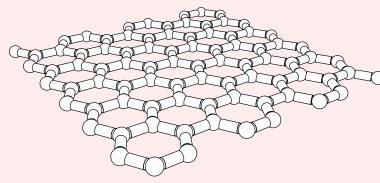
Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answei

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond


3D

Summary

References

◆ロ → ◆母 → ◆ モ → モ → 毛 = ◆ の へ ()

Graphene

Nobel Prize in Physics 2010. Very unusual electronic properties. Will be used in the "Subsea Sensors for Oil and Gas" project.

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

Ask the same question but in a different framing.

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish **Go beyond**

3D

Summary

What is the smallest number of **spheres** that can **fill** more **volume** of a **cube** than a single **sphere**?

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond **3D** Summary References

Cubic configurations

Cubic

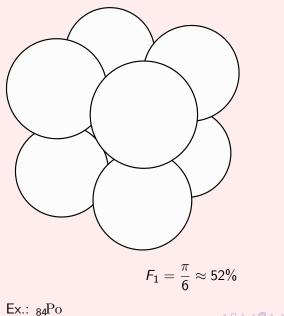
- Boby–centered–cubic (bcc)
- Face-centered-cubic (fcc)
- Clathrate type I ("dfcbcc")

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models


Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond

3D

Summary

Cubic

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

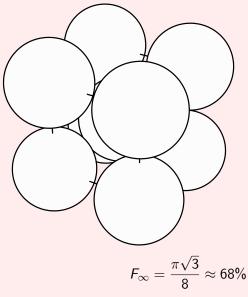
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

Boby-centered-cubic (bcc)

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

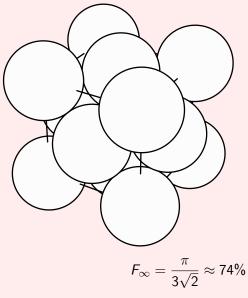
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

Ex.: 26Fe

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

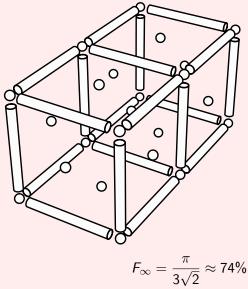
Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond


3D

Summary

References

Ex.: 29Cu

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Ex.: 29Cu

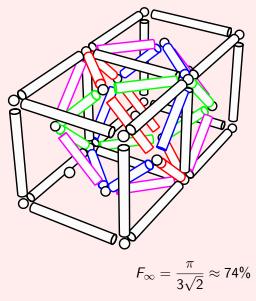
130

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models


Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

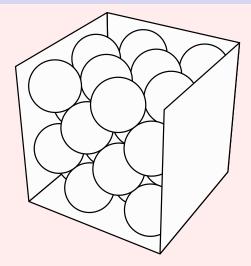
> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0,785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

Ex.: 29Cu

 $F_{31} \gtrsim 52\%$

Ex.: 79Au

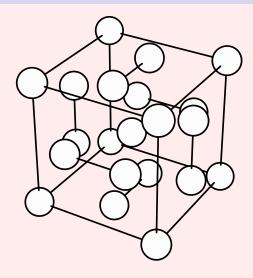
Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond


3D

Summary

References

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > 三目目 のへで

Clathrate

 $F_{\infty} = F_1$

smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

What is the

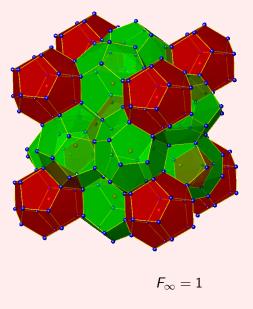
Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish


Go beyond

3D

Summary

References

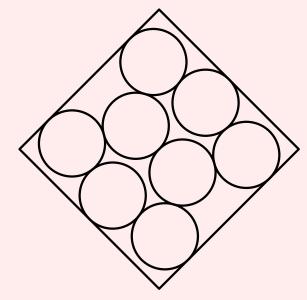
Methane Hydrate / Weaire-Phelan

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Goncalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer


2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish

Go beyond

3D

Summary

Summary

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary

- The SM is the business of questions
- Optimization is always present (together with a reason)
- Know the world

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

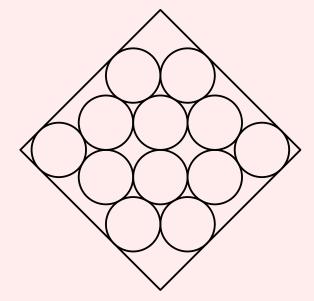
2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary References

- The SM is the business of questions
- Optimization is always present (together with a reason)
- Know the world

"Luck favors the prepared mind" [Louis Pasteur]

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves


Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

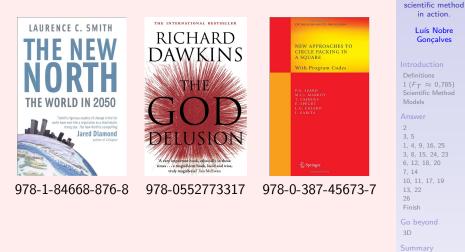
Answei

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary References

References

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves


Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary References

Books

References

What is the

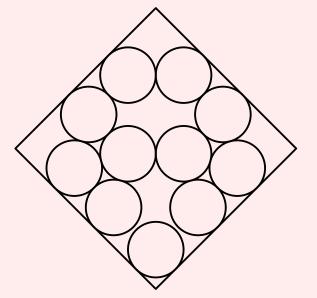
smallest number of circles that can cover more area of a square than a single circle? An example of the

Links

- Definition of "Scientific method" in the wikipedia
- The best known packings of equal circles in a square
- Erich's Packing Center
- What the bees know and what they do not know
- The rise of graphene
- Foam Physics
- Melting snow and ice : a call for action
- Clathrate gun hypothesis
- Avoiding Hydrates in the Petroleum Industry
- ► Ten Simple Rules for Doing Your Best Research
- "John Cleese on Creativity (video from a training)"
- Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves


Introduction

Definitions 1 ($F_T \approx 0.785$) Scientific Method Models

Answer

2 3, 5 1, 4, 9, 16, 25 3, 8, 15, 24, 23 6, 12, 18, 20 7, 14 10, 11, 17, 19 13, 22 26 Finish Go beyond 3D Summary

Appendix

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

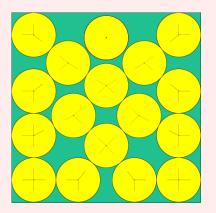
Successes and pitfalls 17 19 49 Acknowledgements Further reading My quote

Successes and pitfalls of the scientific method

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves

Successes and pitfalls

7 9 9


Acknowledgements

My quote

Vortex mill
Kevlar TM
Magnetotherapy

Cold fusion

17

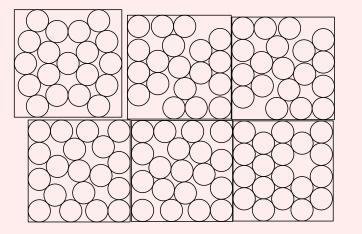
 $F \approx 0,734$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Successes and pitfalls

17


19

49

Acknowledgements Further reading

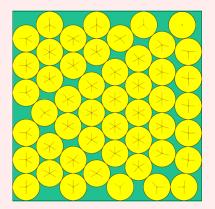
Nv quote

19

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

Luís Nobre Gonçalves

Successes and pitfalls


17

19

49

Acknowledgements Further reading

First non-square perfect square

 $F_{49} pprox 0,791$

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Successes and pitfalls

17 19

49

Acknowledgements Further reading

Acknowledgements

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action. Luís Nobre Gonçalves

Acknowledgements

Further reading

- ▶ ₽TEX Beamer class
- METAPOST
- GNUPLOT

- The first experimental scientist: Alhazen
- "Dialogue Concerning the Two Chief World Systems" by Galileo Galilei

What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Successes and pitfalls 17 19 49 Acknowledgements Further reading

"The scientific method is the most powerful tool ever invented and, therefore, it is also the most dangerous tool. As soldiers face death in war, scientists face craziness in their jobs." What is the smallest number of circles that can cover more area of a square than a single circle? An example of the scientific method in action.

> Luís Nobre Gonçalves

Successes and pitfalls 17 19 49 Acknowledgements Further reading My quote