

makempy

1

You can use METAPOST to create graphics in a declarative manner. Although there are tools to
create METAPOST graphics interactively, by nature the input is a script defining the graphic.

Plain METAPOST can handle text directly, as strings, or as pictures distilled from TEX output. In
both cases, the text is composed of individual characters, and these somehow will end up in the
POSTSCRIPT file generated by METAPOST.

Although one should not see METAPOST as a full blown system for doing fancy graphic, its usage,
especially in a dynamic document as created by TEX, sometimes demands a more sophisticated
way of handling text. The section titles in this document are an example of this.

In this document I will discuss a way to import text (as typeset by TEX) into a METAPOST graphic.
Although primarily written for usage with CONTEXT, this method is quite generic and also works
well with plain TEX, LATEX or others.

Including text as graphics is far from trivial. First it has to be typeset, and of course we want to use
TEX for that, and in our case PDFTEX suits well. Next we need to convert the typeset text to graphics,
or actually outlines. For that step we will use Wolfgang Glunz’s pstoedit, which can produce
METAPOST code from POSTSCRIPT code. This program falls back on GHOSTSCRIPT for creating the
curves out of the fonts. Because (at least currently) handling PDF directly is not working as
expected, we convert the PDF file to POSTSCRIPT with Derek Noonburg’s pdftops program. This
process is illustrated in figure 1.

During a METAPOST run, the text to be processed is written to a file with the suffix mpo. This file,
which only has TEX directives, is converted to a file with suffix mpy which holds METAPOST code.

makempy

2

METAPOST

mpo file

makempy

mpy file

pdfTEX pdftops pstoedit

TEX ConTEXt LATEX

Figure 1 The process of conversion.

The conversion is taken care of by a PERL script makempy. This script generates some intermediate
files that are fed into the programs mentioned.

In a next METAPOST run, the mpy file is read in each time a graphic is needed, and the curves are
processed in a special way that permits us to fill and/draw them. We can apply transformations
and use colors and pens. The macros that take care of this are collected in the METAPOST file
mp-grph.mp, which is part of the CONTEXT distribution, but in itself is an independent part of the
MetaFun suite.

We will now demonstrate this mechanism using a typical TEX example.

input mp-grph ;

beginfig(1) ;

graphictext

"$e=mc^2$"

scaled 10

makempy

3

dashed evenly

withdrawcolor .7blue

withfillcolor .7white

withpen pencircle scaled 2pt ;

endfig ;

This example introduces a METAPOST macro graphictext. The first argument of this macro is a
string. After this string you can specify transform operations like a scaling factor, a shift, a rotation
or a combination of these. In addition to the normal color, pen and dash specifications, there
are two special color operators. When fillcolor is provided, the graphic will be also be filled,
otherwise it will be an outline.

In this example, the string to be processed by TEX is given between "". When using METAPOST

this way, you need to be aware of the fact that there can be no line feeds in a string, so a more
complicated formula has to be specified as follows:

graphictext

("$$\pmatrix{D_x&D_y&1\cr} =" &

" \pmatrix{U_x&U_y&1\cr} " &

" \pmatrix{s_x&r_x&0\cr " &

" r_y&s_y&0\cr " &

" t_x&t_y&1\cr}$$")

....

So, we split the string into lines, which we paste with & and surround by (). However, when in
CONTEXT you want to include such more complicated TEX code in a graphic that is defined in the
source, you need to be aware of unwanted expansion. This is why in CONTEXT we can best define
the string separately, which also keeps the graphic more readable. There we have:

\setMPtext{formula}

{$$\pmatrix{D_x&D_y&1\cr} =

\pmatrix{U_x&U_y&1\cr}

\pmatrix{s_x&r_x&0\cr

r_y&s_y&0\cr

t_x&t_y&1\cr}$$}

makempy

4

This string can be used as follows:

\startMPcode

graphictext

\MPstring{formula}

scaled 2

withfillcolor white

withdrawcolor .7blue

withpen pencircle scaled .75pt ;

\stopMPcode

As you can see from the graphic below, you need to adapt the size of the pen to the scale.

In some cases a glyph is composed of multiple outlines. Therefore, by default, the fill is applied
after the draw. As a result, the perceived pen is smaller than the specified one. One can reverse
drawing and filling by supplying the keyword reversefill as demonstrated in the next example.

\startMPcode

graphictext

\MPstring{formula}

scaled 2

reversefill

withcolor .7blue

withpen pencircle scaled .25pt ;

\stopMPcode

As you can see clearly here, big delimiters are composed of pieces.

In addition to the default method and the reversed fill, we also have an outline fill. The differences
show up clearly if we use a dashed line:

makempy

5

\startMPcode

graphictext "MP" scaled 8

withdrawcolor .7blue withfillcolor .7white

dashed evenly withpen pencircle scaled 2pt ;

\stopMPcode

In the reversed fill, we will get a thinner line, since the fill covers half the line.

\startMPcode

graphictext "MP" scaled 8 reversefill

withdrawcolor .7blue withfillcolor .7white

dashed evenly withpen pencircle scaled 1pt ;

\stopMPcode

The outline fill method will extend the fill to the line, which sometimes gives nicer results with
dashed shapes.

\startMPcode

graphictext "MP" scaled 8 outlinefill

withdrawcolor .7blue withfillcolor .7white

dashed evenly withpen pencircle scaled 2pt ;

\stopMPcode

These three definitions result in the following graphics. The third alternative is the least efficient
because the paths are duplicated.

default fill reverse fill outline fill

In the first example of this section, we use plain TEX, while the second and following examples
depend on CONTEXT. You can specify a TEX back-end using the following directive:

graphictextformat := "latex" ;

In CONTEXT you can specify environments in the normal way1 like:

For more information on what is normal, you can consult the MetaFun manual.1

makempy

6

\startMPenvironment

\setupbodyfont[pos,11pt]

\stopMPenvironment

In a stand-alone METAPOST graphic, you can pass information to TEX using graphictextdirective:

graphictextformat := "latex" ;

graphixtextdirective "\documentclass[]{article}" ;

You don’t have to provide document structuring commands, since these are added by makempy.

You can also use pstoedit independently, in which case each page becomes a figure. You can load
such a figure using the loadfigure macro, as in:

loadfigure("filename.suffix", 4) ;

This macro makes sure that the content of figure 4, when present, is added to currentpicture.
You can also use this macro to include figures defined in other METAPOST files, so that you can
build libraries.

The PERL script makempy uses the following programs:

gs a general purpose POSTSCRIPT processor
pdftops a PDF to POSTSCRIPT converter from the xpdf suite
pstoedit a POSTSCRIPT to whatever vector format converter (often comes with GHOSTVIEW)

When set, the environment variables GS and GS_PROG will be used to identify GHOSTSCRIPT. Of
course you need to have PERL on your system to run makempy as well as PDFTEX (which nowadays
is part of most TEX distributions). If needed, the names of the other programs that are used can be
set with PDFTOPS, ACROREAD and PSTOEDIT.

The makempy script does its work without user intervention. When it deduces that there are no
changes, it will not run at all, otherwise it will report its steps and/or encountered error. The
script takes one argument:

makempy filename

A suffix, when provided, is stripped. The following switches are recognized:

makempy

7

--help returns some basic help information
--silent don’t report status messages
--force always process the file (no checksum test)
--noclean don’t remove temporary files when finished
--acrobat use ACROBAT for conversion (only unix)
--pdftops use PDFTOPS for conversion
--ghostscript use GHOSTSCRIPT for conversion

The last few switches are handy when you encounter errors or get unexpected results. In that case
you can do as follows:

mpost yourfile

makempy yourfile --force --noclean

after that you can take a look at the files whose name start with mpy-yourfile.

mpy-yourfile.tex | .pdf | .log | .pos | .tmp

When using CONTEXT, keep in mind that TEXEXEC uses files with names as mpgraph which can be
prefixed by yourfile, so there we get:

mpy-yourfile-mpgraph.tex | .pdf | .log | .pos | .tmp

At this moment we always use PDFTEX combined with pdftops since it guarantees that we get
everything we need in the file. Experiments with dvips and dvipsone were unsatisfying with
respect to page dimensions and font conversion.

In order to achieve optimal results, a few tricks are used, some of which don’t deserve a beauty
price.

Normally a typeset text will use font sizes between 10 and 30 points, because that’s the way TEX

systems are set up. When such small shapes as font glyphs are converted to curves, we loose quite
some accuracy and the results will be quite awful. For this reason, behind the screens, we scale
the graphic up and down by a factor 10.

Because pdftops has problems with non standard paper sizes, we specify a pretty large working
area when converting the PDF file to POSTSCRIPT. The pstoedit program generates tight code, so
there we will loose unwanted white space.

makempy

8

In order to demonstrate how well TEX and METAPOST can work together, I will give an example that
uses a typeset paragraph. This example uses CONTEXT, but you can of course make an independent
METAPOST figure instead. First we define a graphic:

\startuseMPgraphic{quotation}

graphictext

\MPstring{text}

scaled 2

withdrawcolor .7blue

withfillcolor .7white

withpen pencircle scaled 1pt ;

picture one ; one := currentpicture ; currentpicture := nullpicture ;

graphictext

\MPstring{author}

scaled 4

withdrawcolor .7red

withfillcolor .7white

withpen pencircle scaled 2pt ;

picture two ; two := currentpicture ; currentpicture := nullpicture ;

currentpicture := one ;

addto currentpicture also two

shifted lrcorner one

shifted - 1.125 lrcorner two

shifted (0, - 1.250 * ypart urcorner two) ;

setbounds currentpicture to boundingbox currentpicture enlarged 12pt ;

\stopuseMPgraphic

In this graphic, we have two text fragments, the first one is a text, the second one the name of the
author. We link the quotation and author into this graphic using the following definitions:

\setMPtext{text} {\vbox{\hsize 8.5cm \input zapf }}

\setMPtext{author}{\hbox{\sl Hermann Zapf}}

These definitions assume that the file zapf.tex is present on the system. The graphic, which is
shown on the last page, can now be typeset using the following call:

makempy

9

\useMPgraphic{quotation}

For those not familiar with CONTEXT: the graphic data is written to a file, and processed either
directly or between TEX runs. If you want to know more about the way CONTEXT can interact with
METAPOST, you may want to take a look at the MetaFun manual (which also discusses METAPOST in
detail).

Of course you can also process this quotation as stand alone graphic, in which case the METAPOST

code goes between beginfig-endfig.

For CONTEXT users who want to know how the section headers in this document are defined, I let
their definition follow here.

\startuseMPgraphic{text}

graphictext \MPstring{string} scaled 4

withdrawcolor \MPcolor{blue} withfillcolor \MPcolor{gray}

withpen pencircle scaled 2pt ;

\stopuseMPgraphic

\startuseMPgraphic{number}

graphictext \MPstring{string} scaled 10

withdrawcolor \MPcolor{red} withfillcolor \MPcolor{gray}

withpen pencircle scaled 2pt ;

\stopuseMPgraphic

\def\TextCommand#1%

{\setMPtext{string}{#1}%

\framed

[frame=off,offset=overlay,height=3cm,width=\hsize]

{\useMPgraphic{text}}}

\def\NumberCommand#1%

{\expanded{\setMPtext{string}{\currentheadnumber}}%

\hsmash

{\framed

[frame=off,offset=overlay,height=3cm,width=\hsize]

{\useMPgraphic{number}}}}

\setuphead

[section]

[distance=0pt,

makempy

10

textcommand=\TextCommand,

numbercommand=\NumberCommand]

There are two points worth noticing. We define two hooks into the section header command. In the
macro that deals with the section number, we don’t use the number as provided by the argument
#1, but use the raw number instead. We do so, because the content of this argument contains label
related macros, which don’t operate that well when processed independently from this document.
We need to expand the number, because the graphic is processed in an independent run.

The second trick concerns the hsmash. Because the number and text are placed after each other, we
explicitly have to set the distance to zero, as well as makes sure that the number does not consume
space. By using the \framed macro, we get both text and number nicely centered.

We use default font size but pass the colors (red, blue and gray) from this particular document.
The bodyfont environment is passed on to METAPOST’s TEX run by saying:

\startMPenvironment

\setupbodyfont[loc,ppl]

\stopMPenvironment

The PERL script makempy as well as the METAPOST module mp-grph.mp are part of the CONTEXT

distribution. You can find the latest version in the zipped archive that can be fetched from the
download page at:

www.pragma-ade.com

or one of the mirrors. You can also find CONTEXT in the main stream TEX distributions. If you
encounter problems, you may contact:

Hans Hagen
PRAGMA-ADE, Hasselt, NL
j.hagen@pragma-ade.com

But for support you can best go to the CONTEXT mailing list:

ntg-context@ntg.nl

This manual is typeset at October 28, 2001.

makempy

11

I sincerely hope that Hermann Zapf will forgive me for mis-using his quotation —from an article
on HZ-optimization— as well as for manipulating his Palatino font in this way.

